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A Globally Optimal Particle Tracking Technique 
for Stereo Imaging Velocimetry Experiments 

 
Mark McDowell 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

Abstract 
An important phase of any Stereo Imaging Velocimetry experiment is particle tracking. Particle 

tracking seeks to identify and characterize the motion of individual particles entrained in a fluid or air 
experiment. We analyze a cylindrical chamber filled with water and seeded with density-matched 
particles. In every four-frame sequence, we identify a particle track by assigning a unique track label for 
each camera image. The conventional approach to particle tracking is to use an exhaustive tree-search 
method utilizing greedy algorithms to reduce search times. However, these types of algorithms are not 
optimal due to a cascade effect of incorrect decisions upon adjacent tracks. We examine the use of a 
guided evolutionary neural net with simulated annealing to arrive at a globally optimal assignment of 
tracks. The net is ‘guided’ both by the minimization of the search space through the use of prior limiting 
assumptions about valid tracks and by a strategy which seeks to avoid high-energy intermediate states 
which can trap the net in a local minimum. A stochastic search algorithm is used in place of back-
propagation of error to further reduce the chance of being trapped in an energy well. Global optimization 
is achieved by minimizing an objective function, which includes both track smoothness and particle-
image utilization parameters. In this paper we describe our model and present our experimental results. 
We compare our results with a nonoptimizing, predictive tracker and obtain an average increase in valid 
track yield of 27 percent. 

Introduction 

Particle tracking is one of the phases of a typical Stereo Imaging Velocimetry (SIV) experiment that 
seeks to assign three-dimensional velocity vectors to the particles. Since camera images are two-
dimensional, one can track in two-dimensions and then stereo-match tracks from left and right camera 
images to obtain three-dimensions (ref. 1). Alternatively, one can stereo-match the particles beforehand 
and track directly in three-dimensions (ref. 2). We have chosen the former approach because it reduces 
the problem search-space complexity by one-dimension while providing a step subsequent to the tracking 
phase that serves to prune invalid tracks. We will concentrate on a single camera view in this paper.  

An image frame is an NTSC based digitized frame consisting of many particles. These particles 
appear as overlapping clusters in many areas and must be reduced into constituent particles and further 
reduced to geometrical points representing the approximate center of each particle. We apply a particle 
overlap decomposition routine followed by an intensity-weighted centroid determination algorithm 
(ref. 3). Each particle image may then be parameterized by the 3-tuple 
 
 ( ) ( )[ ] ( ) ( )( ) ( )[ ]tkcccc ppptftkytkxtkLtftkP ,,32100 ,,,,,,,),,,, …+=+  (1) 

 
where 
 
 
f0+t is the image frame sequence number, 
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(xc(k,t),yc(k,t)) is the particle centroid for particle image k in frame f0+t, and 
(p1,p2,p3,…)k,t are the probabilities that a cluster consists of one, two, three, etc. constituent particles. 
 

We take a uniform time sequence of images at 30 Hz. We label each particle in a given frame with a 
particle image id number. A track is then defined as a sequence of four of the 3-tuples shown in 
equation (1). 
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It takes three such 3-tuples to define a constant acceleration, while the fourth frame is retained to 

provide a check on the validity of the constant acceleration assumption. Trigui, Guezennec, Brodkey, and 
Kent (ref. 1) track particles in a five frame sequence to enforce a more rigorous standard of track 
smoothness. However, longer sequences exclude more tracks in turbulent flow. They also increase the 
search space in an exponential manner (refs. 3 and 11). For these reasons, we elected to use four frames. 

While much work has been done in the area of SIV particle tracking, the goal of attaining a globally 
optimal solution is a recent development. Miller et al. and Crouser et al. (refs. 3 and 5) introduced a 
Hopfield net model in this regard, but there are a few problems with this approach. One problem is that 
their Hopfield net employs a track-growing strategy that allows invalid and incomplete track fragments to 
form. Hopfield nets are prone to becoming stuck in local energy minima and suffer greatly from track-
overlap errors, which form the basis for global optimization. During the intermediate stages of global 
optimization, tracks must pass through an overlap state of high activation energy that would serve to trap 
the net at a local minimum.  

We developed a variant of a Guided Evolutionary Simulated Annealing neural net to perform global 
optimization. There are numerous advantages to our approach. First, this approach restricted the search 
space to complete, valid tracks, identified during a crucial setup phase. Second, the evolutionary net with 
simulated annealing is a stochastic search method that is less susceptible to being stuck in local minima. 
Third, an interventionist strategy was adopted whereby randomly selected tracks would not be laid down 
until any obstructing tracks were moved out of the way (or deselected altogether). This step, a simple 
acknowledgment of the fact that a valid configuration can never overlap, minimizes or eliminates high 
intermediate energy barriers. As mentioned previously, the number of images per time sequence per track 
was reduced from five to four, reducing computational complexity by an order of magnitude. 

Tracking Methodology 
Our algorithm divides the tracking problem into two parts, namely: initialization followed by 

optimization. Initialization creates a database containing all feasible tracks. In our neural net paradigm 
these tracks are equivalent to nodes. Optimization is a stochastic-search, evolutionary algorithm which 
begins by randomly selecting from the database complete sets of first guesses as to possible track 
assignments, called parents. Of course, these early parents are poor solutions and need to be optimized. 
This is done by randomly selecting one or more tracks within a parent, changing the track(s), and calling 
the resultant modified solution a child. Several children per parent are generated to create a family. 
Families evolve when a new generation of parents is chosen from among the existing family members. In 
general, the member of a given family with the lowest system error becomes the new parent, and the 
whole process is repeated over many generations until an acceptable solution is found or until the families 
stop evolving (the system error is the objective function which is to be minimized during optimization 
and will be explicitly defined in a later section). The latter can occur because the best solution was found, 
or, more likely, because a local minimum in the system error, also called an energy well, was found. 
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Terrain-following optimization algorithms such as back-propagation of error, tend to get stuck in 
local energy minima. Stochastic search methods are not trapped as easily and are more robust. Yip and 
Pao (ref. 6) devised the general approach that they called the Guided Evolutionary Simulated-Annealing 
optimization algorithm (GESA). A modified version is adapted for this paper. 

Oftentimes, restricting the search space to only feasible solutions can result in increased performance. 
This is why the database chosen in this paper considers the entire track, consisting of four particle images, 
to constitute a single node in the net. Here, a node is a binary-decision variable representing selection or 
de-selection of a track option; and the net is the set of functional constraints existing between the nodes, 
and expressed as an objective function to be minimized. 

The search space is further restricted by screening out invalid tracks during initialization. The ideal 
track is considered to be one that has bounded, constant acceleration across the sequence of four images. 
A maximum velocity restriction is also imposed. These constraints place bounds on where to search for 
particles belonging to a track in successive frames. These ideas are fully presented in a later section. 

Evolution within families occurs by selecting the family member with the lowest system error. 
System error is a relative measure of the acceptability of a given state. Ideally, every particle in every 
frame should be assigned to a single track. This restriction is expressed in the system error (objective 
function) by a usage error term. Furthermore, the tracks so formed should each match exactly with a 
unique track in the orthogonal images of the second camera. This stereo matching requirement is not 
known a priori but serves as an after-the-fact measure of how successful the tracking algorithm may have 
been. 

Particle utilization, however, by itself is clearly not enough information to determine correct tracks. 
The only other information available is track straightness and track smoothness. This is based on our 
assumption of constant acceleration. Tracks are biased both by how straight they are and by how well the 
fourth particle in the track conforms to the position predicted for it by a pair of parametric quadratic 
equations in the x and y directions. These equations are derived from the preceding three particles in that 
track. The equation for system error becomes: 
 
 system_error = track_error + usageCoeff * particle_usage_error (3) 
 
where 

track_error = ∑
=

1

1

N

j
f (track_straightness_error[j], track_smoothness_error[j] 

N1 = the number of tracks = the number of particles in frame 1 
f(τ) = a penalty function defined as a mapping from the parameters shown, with –2.0 < f( ) < 2.0 

(see fig. 7), 
usageCoeff = weighting of the usage error relative to the track error, 

particle_usage_error = ∑∑
= =

F

f

N

j

f

1 1
 | assigned_particle_usage[f, j] - 1 |, 

assigned_particle_usage[f, j] = the number of times particle j in frame f appears within any track from 
a particular assignment of tracks, 

F = the number of frames in a track, and 
Nf = the number of particles in frame f, 1 ≤ f ≤ F = 4 
 

Experimental Procedure 
The experimental setup consists of two cameras oriented at approximately 90° to each other with 

respect to the experimental chamber to give the best spatial resolution (refs. 2 and 7). The chamber is a 
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transparent cylinder, 3 in. high by 3 in. internal diameter, mounted within a cube with 4 in. sides. The 
cube is transparent on the two sides facing the cameras and painted black on the other two sides. The 
bottom of the cube and the cylinder are transparent. A strobe light slaved to the camera sync generator 
illuminates the chamber from below. The cameras provide real-time, interlaced video image data at a 
refresh rate of 60 Hz. Only the even-line images are used, providing an effective refresh rate of 30 Hz. 
This is done to accommodate the relatively low velocities used in our experiments and to eliminate jitter 
caused by interlacing two images 1/60th of a second out of sync with respect to each other. 

Both the cylinder and the cube are filled with water doped with a wetting agent and seeded with a 
known number of 300 μm diameter particles. Particle motion within the cylinder was achieved by using a 
stirrer bar at a constant speed such that a vortex did not occur. The images from the cameras were stored 
on a pair of laser videodisk recorders. These images are then preprocessed to eliminate background noise. 
Figure 1 shows a typical camera image with background noise removed. 

Particle centroids are determined and overlapping particles are identified via the particle overlap 
decomposition stage (ref. 7), which uses a probabilistic algorithm to determine if a cluster consists of one, 
two or three overlapping particles with probabilities assigned as p1, p2, and p3: 
 
 pn = the probability that the cluster contains n particles, 1 ≤ n ≤ 3 (4) 
 

where p1+p2+p3 = 1 
 
The probabilities are passed on to the tracking phase to allow the optimization phase to calculate 

expected values for track usage error.  

Track Initialization 
After loading the image data (see eq. (1)), all valid track options are identified and stored. A valid 

track is defined as a 4-tuple of 3-tuples (see eq. (2)), beginning with frame 1 and ending with frame 4, 
which passes through a single particle image in each of the four frames under consideration, and meets 
the following constraints:  
 

1. Frame 2 particle must lie within a pre-selected maximal radius of the track’s frame 1 particle 
position (refs. 8 to 10). This limiting radius is chosen based upon an a priori estimate of maximal 
velocity for the experiment. 

2. Frame 3 track element must satisfy three, velocity-dependent constraints, namely: a minimum 
velocity constraint, a maximum velocity constraint, and a maximum angle constraint (refs. 8 to 
10). These constraints are functional mappings from the velocity derived between frames 1 and 2 
and shown in figure 2. 

3. Frame 4 track element must lie within a specified maximum radius of the position estimated for it 
based upon the information from frames 1 through 3. This constraint is actually the maximum 
deviation accepted from the assumption of constant acceleration for the ideal track (ref. 11). 

4. A fixed limit is placed upon the number of frame particles that may be assigned to any given 
partial track ending in frame 3. This reduces the size of the search space from O(P4) to O(P3), 
where P is the average number of particles per frame, and can result in dramatic time savings for 
large problems. Selection is performed by sorting the frame 4 particle images by increasing 
distance from the estimated position derived in constraint 3, and picking those with the smallest 
distance which also meet the requirements in constraint 3. Figure 3 shows an example of some of 
these constraints in the determination of valid tracks for a sequence of four image frames. 

This definition of valid tracks leads naturally to a multi-branched, four-level tree structure for valid-
track storage, where successive levels of the tree correspond to successive image frames. Figure 4 gives 
an example of such a structure for a hypothetical case of five frame 1 particles. There is one such tree 
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structure for each particle image in frame 1. Each frame 1 particle image is the root of its own valid-track 
tree.  

Track Selection 

The track-optimization algorithm selects one valid-track tree at random from a given parent and alters 
the currently assigned track for that tree. Therefore, there is a need to quickly select a single tree from 
among the set of all frame 1 valid-track trees for that parent. Suppose there are N1 such trees for each 
parent (N1 is dependent only on the number of particles in frame 1, so it must be the same for all parents). 
We are interested in eventually testing all valid-track options per tree. In general, we want the probability 
of selection to be weighted by the number of leaves in the tree. We choose: 
 

 ( )
∑
=

=γ
1

1

1 N

i
i

k

T

T
k  (5) 

 
where 
 

γ1 (k) is the probability of selecting the kth valid-track tree. The subscript ‘1’ refers  
to the fact that we are selecting among particles at the frame 1 level.  

Ti is the number of valid tracks (leaves) in the ith tree, 1 ≤ i ≤ N1 
 

We would like to perform tree selection by choosing a single random number in the range 0 to 1. 
Therefore we need to convert γ into a distribution function: 
 

 ( ) ∑∑
==

=Γ
1

11
1

N

i
i

k

j
j TTk  (6) 

 
For example, figure 4 depicts representative values for Γ1(k), labeling them as ‘frame 1 selection 

distribution numbers.’  
Once a particular valid-track tree has been selected, the optimization algorithm randomly chooses one 

of the valid-track options in the tree to become the assigned track for that tree. To perform such a 
selection for any given tree, using a single random number between 0 and 1, requires a separate and 
distinct distribution function for each tree. Because there are an exponentially large number of unique 
combinations of track assignments as solutions to the tracking problem, it is not possible to directly test 
all of them. Instead, we must favor the best options at the expense of the others, without totally 
suppressing the latter. Hence, we must weight the leaves of a given tree according to which is most likely 
to be the correct choice. Equation (3) defines the correctness of an outcome in terms of the track-error and 
the track-usage-error. We now describe a weighting of the leaves of a tree based upon these parameters. 
We will use the phrase ‘track-fragment through frame 3’ to mean the first three particle id numbers of 
some four-frame track (or of some set of four-frame tracks having the same first three particle id 
numbers).  

Whole-track options in a valid-track tree may be represented by the leaves of the tree arranged in a 
rectangular grid, as depicted in figure 5. A given row of the grid represents all of the frame 4 options for a 
given ‘track-fragment through frame 3.’ The best frame 4 option for a given ‘track-fragment through 
frame 3’ is placed in column 1 of the grid, the second best in column 2, and so on. Notice that we restrict 
the number of frame 4 options for each ‘track-fragment through frame 3’ to a constant value (5 in this 
case) in conformity with the fourth geometric constraint. Let us define an error function as follows: 
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 u(k, r, c) = g(track_straightness_error[k,r,c], track_smoothness_error[k,r,c]) (7) 
   = error function for the kth valid track tree having indices,  
   (r, c) = (row, column) and 0 < u(k,r,c) < 1 
 

We do not want to reward poor performance (high error), so we must complement the sense of error 
into a sense of reward, as follows: 
 
 ( ) ( )crkucrkv ,,1,, −=  (8) 
 

Normalizing these values gives: 
 

 ( ) ( ) ( )∑∑
= =

=γ
k rkF

i

F

j
jikvcrkvcrk

1 1
4

,

,,,,,, ,   ( ) 1,,0 4 ≤γ≤ crk  (9) 

 
where 
 
γ4 (k,r,c) = the discrete probability density function for selecting a given track in the tree. 

The subscript ‘4’ indicates that selection is occurring at the fourth level of the 
tree (the leaves of the tree) and that, therefore, whole tracks are being selected. 

Fk = the number of ‘track-fragments through frame 3’ in the kth valid-track tree 
Fk,γ = the number of track options in row r of the kth track tree, 1 ≤ Fk,r ≤ 5 
 

Finally, to perform a selection using a single random number between 0 and 1, we require the 
probability distribution function of γ4 : 
 

 ( ) ( ) ( )∑∑ ∑
−

= = =

γ+γ=Γ
1

1 1 1
444

,

,,,,,,
r

j

F

i

c

i

jk

irkijkcrk  (10) 

Track Error  

Equation (10) is based upon u(k,r,c) in equation (7), which describes the error ascribed to a valid 
track due to its deviation from an ideal, perfectly smooth track. We now derive this error. Throughout this 
section we retain the same notation as in the preceding section. That is, all valid tracks for a given frame 1 
particle form a tree as in figure 4, and the leaves of the tree are ordered by row and column in a grid as in 
figure 5. 

Refering to equation (7), if we assume that the parameters of g( ) are also normalized, we can write: 
 

u(k, r, c) = trkCoeff * track_straightness_error[k,r,c] 
+ (1.0 - trkCoeff) * track_smoothness_error[k,r,c] (11) 

 
where 0 < trkCoeff < 1 is a simple weighting.  
 
The variable track_straightness_error[k, r, c] is the distance of the track in image frame 3 from an 
estimated position based upon an assumption of constant velocity derived between image frames 1 and 2. 
This distance is depicted in figure 6(a), where it is labeled delta3. We write: 
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 track_straightness_error[k, r, c] = straightCoeff * delta3[k, r, c] (12) 
 
where 
 
delta3[k, r, c] = the euclidean distance between the constant velocity estimate of position, 

est3[k,r,c], and the actual position, id3[k,r,c], in frame 3 for the valid track in row r and 
column c of the valid-track grid for the kth tree. 

est3[k, r, c] = the estimated point with coordinates: 
est3[k,r,c](x) = 2 * (id2[k,r,c](x) - id1[k,r,c](x)) + id1[k,r,c](x) 
est3[k,r,c](y) = 2 * (id2[k,r,c](y) - id1[k,r,c](y)) + id1[k,r,c](y) 

straightCoeff = a velocity-mapped term which makes the error independent of scale. 
 

In figure 6(a), minR, maxR, Radius, θ, and maxθ are the velocity-mapped constraints on the size of 
the search region in image frame 3, mentioned earlier when discussing the geometrical constraints. 

Similarly, track_smoothness_error[k, r, c] is the distance of the track in image frame 4 from an 
estimated position based upon an assumption of constant acceleration derived from the first three image 
frames. This distance is defined as delta4 in figure 6(b). Delta4 is the distance of the actual frame 4 
particle position from the estimate est4. Est4 is arrived at by assuming constant acceleration as 
determined by the first three frames and expressed as a pair of quadratic, parametric equations in the X 
and Y dimensions. We have: 
 
 track_smoothness_error[k, r, c] = smoothCoeff * delta4[k, r, c] (13) 
 
where 
 
delta4[k, r, c] = the euclidean distance between the constant-acceleration estimate of position, est4[k,r,c], 

and the actual position, id4[k,r,c], in frame 4 for the valid track in row r and column c of 
the kth track tree. 

est4[k, r, c] = the estimated point with coordinates derived below. 
smoothCoeff = a velocity-mapped term which makes the error independent of scale. 
 
and 
 
est4[k, r, c](x) = at2 + bt + c = 9a + 3b + c  
   = 3(id3[k,r,c](x) - id2[k,r,c](x)) + id1[k,r,c](x) 
est4[k, r, c](y)  = a2t2 + b2t + c2 = 9a2 + 3b2 + c2  
   = 3(id3[k,r,c](y) - id2[k,r,c](2)) + id1[k,r,c](y) 
 
Having defined u[k, r, c], we are able to derive equation (10), which allows us to randomly designate one 
of the tracks in the kth track-tree as an active track. We denote these errors as being specific to a given 
parent (or child), labeled p, as follows:  
 
 system_error[p] = track_error[p] + usageCoeff * particle_usage_error[p] (14) 
 
where 
 

track_error[p] = ∑∑∑
= = =

1 ,

1 1 1

N

k

F

r

F

c

k rk

f (u[p, k, r, c]) * X[p, k, r, c] 

 
 ƒ(u[p, k, r, c]) = a penalty function for parent ‘p’ defined as a mapping of error  
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u[p, k, r, c] into the range -2.0 < ƒ( ) < 2.0 (see fig. 7) 
 X[p, k, r, c] = a binary variable with value 1 if the valid-track option [p, k, r, c] is  

active (has been selected), and with value 0 otherwise 
 N1 = the number of track trees = the number of particles in frame 1 
 Fk = the number of ‘track-fragments through frame 3’ in the kth valid-track tree 
 Fk, r = the number of track options in frame 4 corresponding to the rth ‘track-fragment  

through frame 3’ of the kth track tree, 1 ≤ Fk, r ≤ 5 
 

The mapping ƒ:[0, 1] → [-2, 2] is depicted in figure 7. The positive values of ƒ(τ) in figure 7 reflect a 
preference to reject a certain track (since the optimization algorithm seeks to minimize the objective 
function). A zero value would show no preference between accepting a track or having no track at all 
selected in a given tree. Finally, a negative value of ƒ(τ) induces track selection. The curve in figure 7 is 
skewed downwards to favor the negative range of ƒ(τ). This allows a wider range of tracks to be selected. 
Therefore, tracks with higher track error are made more acceptable. We would prefer to have track usage-
errors determine the final outcome because they are the single source of global interaction during 
optimization. We thus look upon the track smoothness constraint as a local bias favoring smoother tracks, 
applied against a larger backdrop of global optimization on track usage errors. 

Track Optimization 
Recall that evolutionary optimization places distinct copies of the entire problem space (the valid-

track trees and any track assignments made therein) in each of the parents. Then the parents create clones 
of themselves, called children, which can subsequently be modified to create a new generation of track 
assignments. The relative performance of the children is evaluated by calculating the system error defined 
in equations (3) and (14). The child with the lowest system error can become the new parent. 

Particle Image Usage Error 

Recall the definition of particle_usage_error given in equation (3), assigning them to a particular 
parent, labeled p: 
 

 particle_usage_error[p] = ∑∑
= =

F

f

N

j

f

1 1
| assigned_particle_usage[p, f, j] - 1 | (15) 

 

assigned_particle_usage[p, f, j] = ∑∑∑
= = =

1 ,

1 1 1

N

k

F

r

F

c

k rk

X[p, k, r, c] * Y[p, k, r, c, f, j] 

 
= the number of times particle j in image frame f appears within any track from a particular 

assignment of tracks for parent p. 
X[p, k, r, c] = a binary variable with value 1 if the valid-track option [p, k, r, c] is  

active (has been selected), and with value 0 otherwise 
Y[p, k, r, c, f, j] = a binary variable with value 1 if the valid-track option [p, k, r, c] 

contains particle j in frame f , and with value 0 otherwise 
F = the number of frames in a track = 4 
Nf = the number of particles in frame f, 1 ≤ f ≤ 4 
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Notice that equation (15) says that if assigned_particle_usage[] equals unity then there is no error. 
This is equivalent to saying that every particle should be in only one track. Error increases linearly as 
assigned_particle_usage[] deviates from unity from above or below.  

Child Implementation 
Recall that optimization of the parent involves the generation of children which are clones of the 

parent subsequently altered with respect to the assignment of one (or a couple) track(s). An 
implementation strategy is to record only the changes for the children, as opposed to making explicit 
copies of all of the track-trees in the problem. Child system errors can be calculated by altering the parent 
to look like the child, performing the calculations, them changing it back. The savings in memory and 
time required can be substantial for large problems. 

The Optimization Process 

The algorithm for executing the optimization routine is shown in figure 8. The main loop runs the 
search until a stable state is found. Typically this occurs in 60 to 160 iterations for 100 particles or up to 
500 iterations for 200 to 300 particles. The ‘for’ loop makes changes to all parents. We discuss aspects of 
this procedure in the next several sections.  

Child Creation 
A child is created from its parent when a track tree is randomly chosen for alteration, using 

equation (6). A specific track in the tree is chosen using equation (10). The chosen track is to be made 
active in the sense of the binary variables X[ ] and Y[ ] in equations (14) and (15) respectively.  

Parent Selection 

Once the children are created, the optimization procedure described in figure 8 examines the 
outcomes and determines how successful the different families have been. The measure for such 
determination is equation (3), the system error for parent or child. The first task in this routine is to find 
the number of viable children in each family. A child is viable if its system error is at least as good as its 
parent’s system error. Those children that do not meet this criterion still have a chance to be rated viable 
if they overcome a probabilistic hurdle known as stochastic simulated annealing, which is similar to the 
thermodynamic annealing factor found in Boltzmann machines. The test is as follows: 
 
 if (exp(delta_error / τ) > ξ ) then child is valid (16) 

else child is invalid 
 
where 
 
 delta_error = (parent_error - child_error) < 0 
 τ = thermodynamic annealing factor, the annealing ‘temperature’ 
 ξ = randomly chosen real number, with 0 < ξ < 1.0 
 

The purpose of this test is to decrease the probability that the optimization will get stuck in a local 
energy minimum by allowing some borderline children to be selected while still maintaining an overall 
push in the direction of the steepest decline in the system error terrain. 

In this manner, each parent, p, receives a valid child count that is a relative measure of the success of 
a family. Each family is assigned a new family size based upon this count as follows: 
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            P 
 childCount[p] = total_count * valid_count[p] / ∑ valid_count[p] (17) 
            p=1  
where 
 
 total_count = the total desired population of children 
 

After family sizes are determined, the next task is to designate the new parent for the next iteration. 
This is called reseeding the families. It is necessary to assign the ‘best’ family by the process of 
comparing system errors and picking the family with the smallest error. 

Reseeding the Families 
We give families a chance to perform by assigning them a number of ‘lives’ that are initialized to 

some value, say 5. Each family is thus given 5 lives in which to perform. Each time a family fails to 
install a new parent, one life is lost. Each time it succeeds, a new life is added (up to the limit). This 
becomes a race for the family to keep producing. If a family runs out of lives, then it is replaced by one of 
the viable children of the best family. Once assigned, that child is marked unavailable for further 
assignment. If the best family has no such children left to assign, then the best parent is assigned.  

The assignment of lives to each family is a useful regulatory mechanism for controlling the life span 
of each family. It gives marginal families a chance to overcome local minima while concentrating efforts 
around the best families. 

Using Stereo-Matched Tracks for Verification 
Performance is measured by the percent of valid stereo-matched tracks obtained. The number of 

actual tracks present was measured by simply counting the number of particle images in each frame. 
Separately, an optimizing stereo-matching program was used to provide a list of valid stereo-matched 
tracks.  

The stereo-matching algorithm used for validation purposes is an evolutionary neural net model, 
conceptually similar to the one used for the tracking model. Optimization error is taken to be the sum of 
the squared vertical displacements (in pixels) between corresponding particle images, on a frame-by-
frame basis, matching a given track from the left view with one in the right view. This is similar to the 
approach taken in Trigui et al. (ref. 1). A threshold value was chosen for the sum of the squared errors. 
Any pair of tracks having an error exceeding this value was rejected.  

We chose a threshold value of 4 * (2 * 2) = 16 which is what one gets if each of the four frames has a 
vertical alignment error of 2 pixels between the left and right views. We choose the error to be the sum of 
the squared errors in each frame to prevent the displacement of any single particle in the tracks from 
being excessive. We also are able to directly examine the tracks generated using a stylized representation 
of the tracks generated, and of failed tracks to provide a means to visually verify that the tracks are 
correct. 

 

Experimental Results 
The track yields of the optimizing and the non-optimizing models are shown in figure 9 for a run 

whose density were 130 particles. Here we have taken a sequence of 16 frames and have successively 
chosen four frames whose starting frame varies from frame 1 through frame 13 in succession. The 
average yields are 86 and 107 valid tracks for the non-optimizing and the optimizing models, 
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respectively. The average yields for runs of varying densities are shown in table 1. The average track 
yield for the non-optimizing model is 66 percent, while for the optimizing model it is 84 percent. From 
the final column of table 1, we see that, on average, optimization in the tracking phase alone brought 
about a 27 percent increase in yield. 

Obviously, track yields are highest at low particle densities due to less interaction between tracks. 
Also, the final column shows that the relative advantage of the optimizing model over the non-optimizing 
model was greater at higher densities. This is expected due to the increased overlap between tracks and 
the corresponding need to distinguish between a greater number of options per track. Also, as overlap 
increases, the effect of track assignments in one region of space begins to influence track assignments in 
more remote areas through a domino effect of one assignment pushing out another. This calls for an 
increasingly global approach to optimization through track utilization error minimization.  

The second column of table 1 shows that the area covered by the particles at the densities listed varies 
from 1.3 up to 4.9 percent of the total area, which is a significant increase (Malik et al. provide a much 
more thorough discussion of the measurement of particle density and its effects upon tracking yields). We 
expected to see a significant drop-off in track yield as the number of particles reached 270. 

In the case of the optimizing model, the reason for track failure is generally the lack of sufficient 
information in each camera view to resolve intertwining tracks. Figure 10 depicts some of the situations 
where ambiguity can arise. In all cases depicted in figure 10, the incorrectly assigned track is valid in the 
sense that it is smooth. The laminar flow example in figure 10 is interesting because of its intrusiveness. 
Usually when such tracks form they do not prevent the other tracks from forming. However, such cases 
have high overlap error. This is not completely avoidable and happens quite a bit in tight clusters of 
particles. Errors like those depicted in table 1 are typical of the errors which cause a drop in performance 
at higher particle densities (from 88 percent for 90 particles to 82 percent for 270 particles). 
All of the examples in figure 10 are reasons why yields drop dramatically as density increases.  

Summary 
We have shown significant improvement in valid, stereo-matched track yields through the use of 

global optimization techniques during the tracking phase. This was done using short time-sequences of 
only four time frames. We have shown that virtually all tracks can be readily characterized as belonging 
to one of two classes characterized by the degree of track integrity, and we have shown how to adjust 
tracks of low track integrity to provide a more accurate estimate of track shape. 

The tracking program described in this paper utilizes the probabilities output from a probabilistic 
particle overlap-decomposition algorithm in order to more fully utilize the available information.  

The optimizations converge very quickly due to the careful efforts to reduce the number of potentially 
valid tracks during initialization, and due to the efforts taken by the child-creation procedure to not create 
unstable states by blindly laying new tracks over old. The reduction in the number of potentially valid 
tracks occurs via a set of geometrical constraints that serve to restrict the size of the search space along 
the length of the track.  
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TABLE 1.—VALID (I.E. STEREO-MATCHED) AVERAGE TRACK YIELDS AS A FUNCTION OF PARTICLE DENSITY 
Number of particles in 

suspension, 
(approx.) 

Percent of total area 
covered by the 

particles 

Nonoptimizing model 
valid track yield 

Optimizing model 
valid track yield 

Percent increase in 
valid tracks found 

90 particles 1.34% 66 tracks (73%) 79 tracks (88%) 20% 
130 2.17 86 (64%) 107 (82%) 24 
190 3.56 117 (62%) 153 (81%) 31 
230 4.57 149 (65%) 199 (86%) 33 
270 4.86 175 (65%) 221 (82%) 26 
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Figure 1.—Cleaned camera image of 
approximately 200 particles. 

 
 

 
 

Figure 2.—Dependence of Geometrical Constraints upon velocity. 



NASA/TM—2008-215153 14

 
 

Figure 3.—An example which illustrates the manner in which potentially valid tracks are identified. An empty search 
region terminates a track fragment. In this example two valid tracks are identified. One of these two track options 
will ultimately be favored over the other as a result of optimization. 

 

 
 

Figure 4.—Depiction of hypothetical valid-track trees. Each particle in each image frame is identified by an id number. 
Each distinct path from frame 1 through frame 4 represents a distinct track. The frame 1 selection distribution 
numbers are based upon the ratio of the number of valid tracks in that tree (the number of leaves in the tree) 
versus the total number of valid tracks for all trees (the total number of valid tracks is 12 in this example). 
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Figure 5.—Whole-track options in a valid-track tree may be represented by the leaves of the tree arranged in a 

rectangular grid. The best frame 4 option for a given ‘track-fragment through frame 3’ are placed in column 1 of the 
grid, the second best in column 2, and so on. Notice that we restrict the maximum number of frame 4 options for 
each ‘track-fragment through frame 3’ to a constant number (5 in this case). 

 

 
 

Figure 6.—Track errors. 
 

 

 
 

Figure 7.—Mapping from track error to penalty function. 
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________________________________________________________________ 
while the system error continues to decrease do the following { 
 for each parent do the following { 
  create children for the parent 
  analyze the performance of the children 
  determine who will be the new parent 
  save the results 
  } 
 compare families, find the lowest system error, and reward the better  
  families with the right to produce more children during the  
  next iteration 
 update the families by changing over to the new parents 
 } 
print the results 
________________________________________________________________ 

 
Figure 8.—The main optimization procedure loop. 

 
 
 

 
 

Figure 9.—Comparison of results over 13 + 3 = 16 frames. 
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Figure 10.—Examples of failures during optimization. 
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